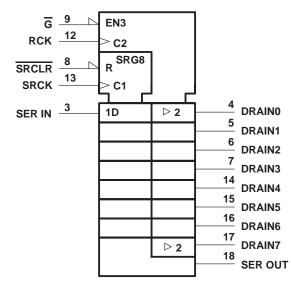
SLIS010B - APRIL 1992 - REVISED MAY 2005

- Low $r_{DS(on)} \dots 1.3 \Omega$ Typical
- Avalanche Energy . . . 75 mJ
- Eight Power DMOS Transistor Outputs of 250-mA Continuous Current
- 1.5-A Pulsed Current Per Output
- Output Clamp Voltage at 45 V
- Devices Are Cascadable
- Low Power Consumption

description


The TPIC6595 is a monolithic, high-voltage, highcurrent power 8-bit shift register designed for use in systems that require relatively high load power. The device contains a built-in voltage clamp on the outputs for inductive transient protection. Power driver applications include relays, solenoids, and other medium-current or high-voltage loads.

This device contains an 8-bit serial-in, parallel-out shift register that feeds an 8-bit D-type storage register. Data transfers through both the shift and storage registers on the rising edge of the shift-register clock (SRCK) and the register clock (RCK) respectively. The storage register transfers data to the output buffer when shift-register clear (SRCLR) is high. When SRCLR is low, the input shift register is cleared. When output enable (\overline{G}) is held high, all data in the output buffers is held low and all drain outputs are off. When \overline{G} is held low, data from the storage register is transparent to the output buffers. The serial output (SER OUT) allows for cascading of the data from the shift register to additional devices.

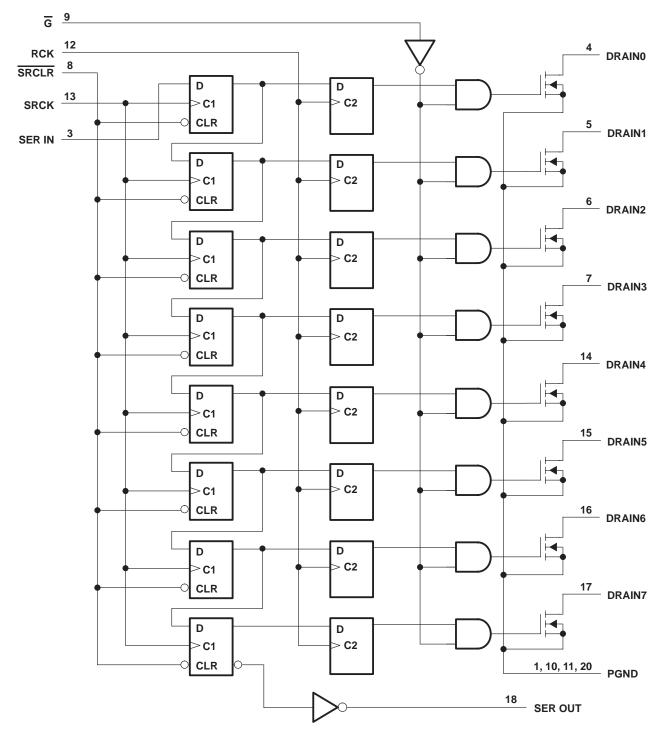
Outputs are low-side, open-drain DMOS transistors with output ratings of 45 V and 250-mA

DW OR N PACKAGE (TOP VIEW)										
		<u> </u>								
PGND [1 U	20	PGND							
Vcc[2	19	LGND							
SER IN	3	18	SER OUT							
DRAIN0	4	17	DRAIN7							
DRAIN1	5	16	DRAIN6							
DRAIN2	6	15	DRAIN5							
DRAIN3	7	14	DRAIN4							
SRCLR	8	13	SRCK							
G	9	12	RCK							
PGND	10	11	PGND							

logic symbol[†]

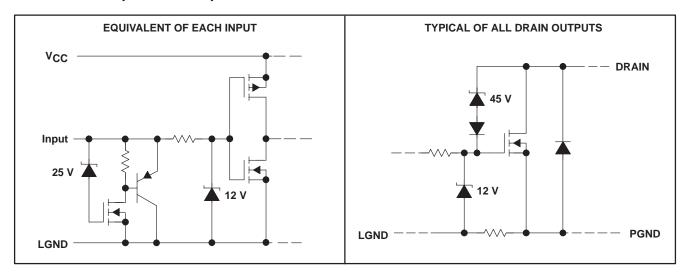
[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

continuous sink current capability. When data in the output buffers is low, the DMOS-transistor outputs are off. When data is high, the DMOS-transistor outputs have sink current capability.


Separate power and logic level ground pins are provided to facilitate maximum system flexibility. Pins 1, 10, 11, and 20 are internally connected, and each pin must be externally connected to the power system ground in order to minimize parasitic inductance. A single-point connection between pin 19, logic ground (LGND), and pins 1, 10, 11, and 20, power grounds (PGND), must be externally made in a manner that reduces crosstalk between the logic and load circuits.

The TPIC6595 is characterized for operation over the operating case temperature range of -40°C to 125°C.

SLIS010B - APRIL 1992 - REVISED MAY 2005


logic diagram (positive logic)

SLIS010B - APRIL 1992 - REVISED MAY 2005

schematic of inputs and outputs

absolute maximum ratings over recommended operating case temperature range (unless otherwise noted)^{\dagger}

Logic supply voltage, V _{CC} (see Note 1)	
Logic input voltage range, V _I	–0.3 V to 7 V
Power DMOS drain-to-source voltage, V _{DS} (see Note 2)	
Continuous source-drain diode anode current	1 A
Pulsed source-drain diode anode current	
Pulsed drain current, each output, all outputs on, I_{Dn} , $T_A = 25^{\circ}C$ (see Note 3)	750 mA
Continuous drain current, each output, all outputs on, IDn, TA = 25°C	250 mA
Peak drain current single output, I _{DM} , T _A = 25°C (see Note 3)	
Single-pulse avalanche energy, EAS (see Note 4)	
Avalanche current, I _{AS} (see Note 4)	1 A
Continuous total power dissipation	
Operating virtual junction temperature range, T ₁	–40°C to 150°C
Storage temperature range, T _{stg}	
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltage values are with respect to LGND and PGND.
 - 2. Each power DMOS source is internally connected to PGND.
 - 3. Pulse duration \leq 100 µs, duty cycle \leq 2 %

4. DRAIN supply voltage = 15 V, starting junction temperature (T_{JS}) = 25° C, L = 100 mH, I_{AS} = 1 A (see Figure 4).

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 125°C POWER RATING
DW	1125 mW	9.0 mW/°C	225 mW
Ν	1150 mW	9.2 mW/°C	230 mW

SLIS010B - APRIL 1992 - REVISED MAY 2005

recommended operating conditions over recommended operating temperature range (unless otherwise noted)

	MIN	MAX	UNIT
Logic supply voltage, V _{CC}	4.5	5.5	V
High-level input voltage, VIH	0.85 V _{CC}		V
Low-level input voltage, VIL		0.15 V _{CC}	V
Pulsed drain output current, $T_C = 25^{\circ}C$, $V_{CC} = 5 V$ (see Notes 3 and 5)	-1.8	1.5	А
Setup time, SER IN high before SRCK [↑] , t _{SU} (see Figure 2)	10		ns
Hold time, SER IN high after SRCK [↑] , t _h (see Figure 2)	10		ns
Pulse duration, t _W (see Figure 2)	20		ns
Operating case temperature, T _C	-40	125	°C

electrical characteristics, V_{CC} = 5 V, T_{C} = 25°C (unless otherwise noted)

	PARAMETER		TEST CONDI	TIONS	MIN	TYP	MAX	UNIT
V(BR)DSX	Drain-source breakdown voltage	I _D = 1 mA			45			V
V _{SD}	Source-drain diode forward voltage	I _F = 250 mA,	See Note 3			0.85	1	V
	High-level output voltage,	$I_{OH} = -20 \text{ mA}$	$V_{\rm CC} = 4.5 \rm V$		4.4	4.49		V
VOH	SER OUT	$I_{OH} = -4 \text{ mA},$	$V_{CC} = 4.5 V$		4.1	4.3		V
N	Low-level output voltage, SER	I _{OH} = 20 mA,	$V_{CC} = 4.5 V$			0.002	0.1	V
VOL	OUT	$I_{OH} = 4 \text{ mA},$	$V_{CC} = 4.5 V$			0.2	0.4	V
V _(hys)	Input hysteresis	V _{DS} = 15 V				1.3		V
IIН	High-level input current	V _{CC} = 5.5 V,	$V_I = V_{CC}$				1	μA
IIГ	Low-level input current	V _{CC} = 5.5 V,	$V_{I} = 0$				-1	μA
ICCL	Logic supply current	I _O = 0,	All inputs low			15	100	μΑ
ICC(FRQ)	Logic supply current frequency	fSRCK = 5 MH See Figures 1,	lz, IO = 0, , 2, and 6	C _L = 30 pF,		0.6	5	mA
IN	Nominal current	$V_{DS(on)} = 0.5$ $I_N = I_D$,	V, T _C = 85°C	See Notes 5, 6, and 7		250		mA
		V _{DS} = 40 V				0.05	1	
IDSX	Off-state drain current	V _{DS} = 40 V,	T _C = 125°C			0.15	5	μA
		I _D = 250 mA,	$V_{CC} = 4.5 V$			1.3	2	
^r DS(on)	Static drain-source on-state resistance	I _D = 250 mA, V _{CC} = 4.5 V	T _C = 125°C,	See Notes 5 and 6 and Figures 9 and 10		2	3.2	Ω
		I _D = 500 mA,	V _{CC} = 4.5 V			1.3	2	

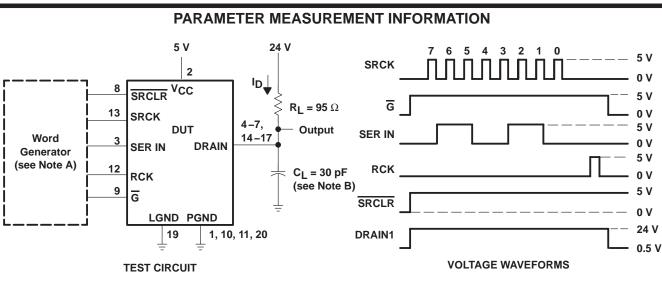
switching characteristics, V_{CC} = 5 V, T_C = 25°C

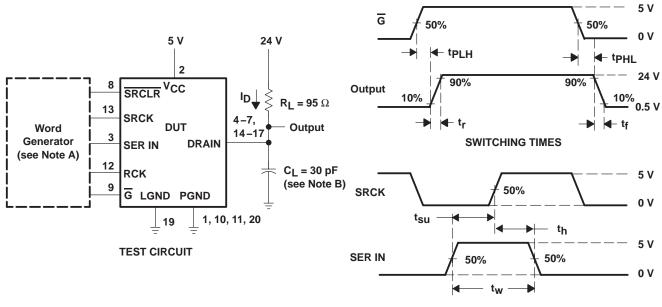
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
^t PLH	Propagation delay time, low-to-high-level output from \overline{G}			650		ns
^t PHL	Propagation delay time, high-to-low-level output from \overline{G}	C _L = 30 pF, I _D = 250 mA,		150		ns
tr	Rise time, drain output	See Figures 1 and 2		750		ns
t _f	Fall time, drain output			425		ns
ta	Reverse-recovery-current rise time	I _F = 250 mA, di/dt = 20 A/μs,		100		
t _{rr}	Reverse-recovery time	See Notes 5 and 6 and Figure 3		300		ns

NOTES: 3. Pulse duration $\leq 100 \,\mu$ s, duty cycle $\leq 2\%$

5. Technique should limit $T_J - T_C$ to 10°C maximum.

6. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.

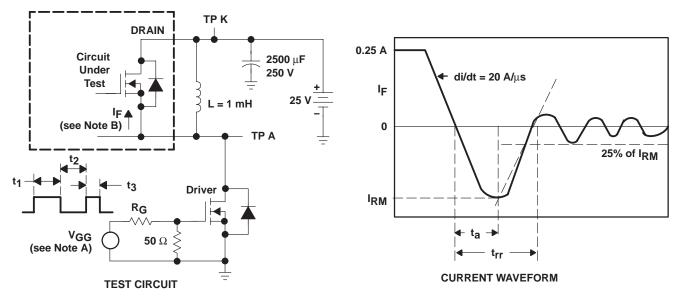

Nominal current is defined for a consistent comparison between devices from different sources. It is the current that produces a voltage drop of 0.5 V at T_C = 85°C.


SLIS010B - APRIL 1992 - REVISED MAY 2005

thermal resistance

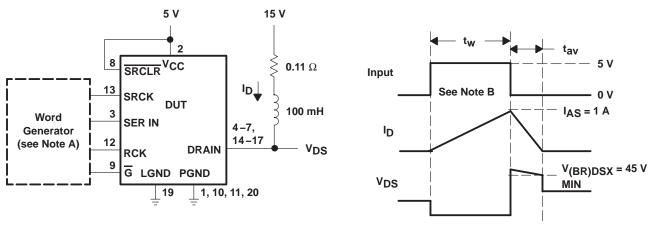
	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT	
	The second second state and the second second state of	DW package			111	
R _{0JA} Thermal resistance, junction-to-ambient	N package	All 8 outputs with equal power		108	°C/W	

INPUT SETUP AND HOLD WAVEFORMS



NOTES: A. Outputs DRAIN 1, 2, 5, and 6 low (PGND), all other DRAIN outputs are at 24 V. The word generator has the following characteristics: t_r ≤ 10 ns, t_f ≤ 10 ns, t_f ≤ 10 ns, t_g = 300 ns, pulsed repetition rate (PRR) = 5 kHz, Z_O = 50 Ω.
B. C_I includes probe and jig capacitance.

Jia _


SLIS010B - APRIL 1992 - REVISED MAY 2005

PARAMETER MEASUREMENT INFORMATION

- NOTES: A. The V_{GG} amplitude and R_G are adjusted for di/dt = 20 A/ μ s. A V_{GG} double-pulse train is used to set I_F = 0.25 A, where t₁ = 10 μ s, t₂ = 7 μ s, and t₃ = 3 μ s.
 - B. The DRAIN terminal under test is connected to the TP K test point. All other terminals are connected together and connected to the TP A test point.

Figure 3. Reverse-Recovery-Current Test Circuit and Waveforms of Source-Drain Diode

SINGLE-PULSE AVALANCHE ENERGY TEST CIRCUIT

VOLTAGE AND CURRENT WAVEFORMS

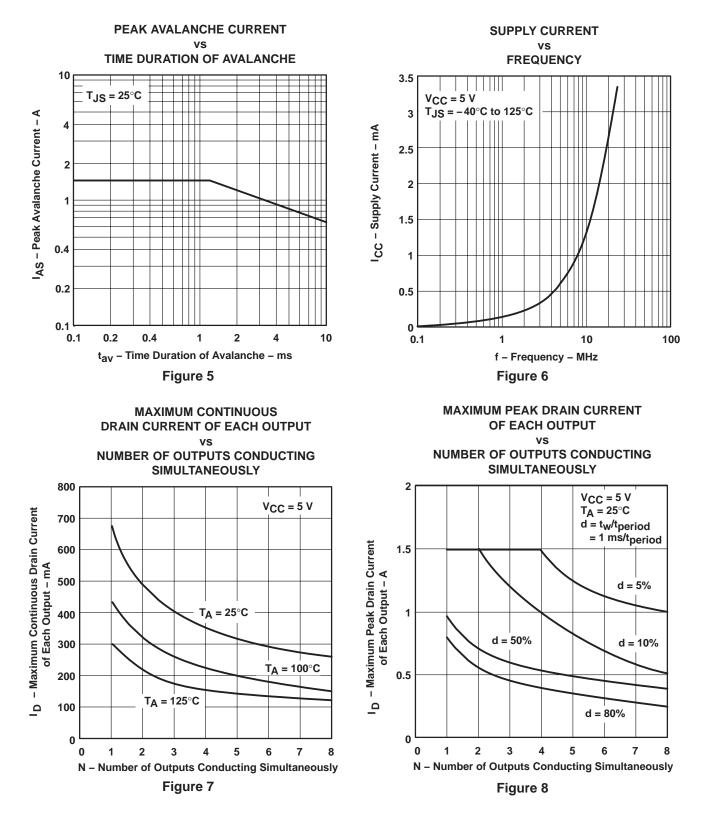
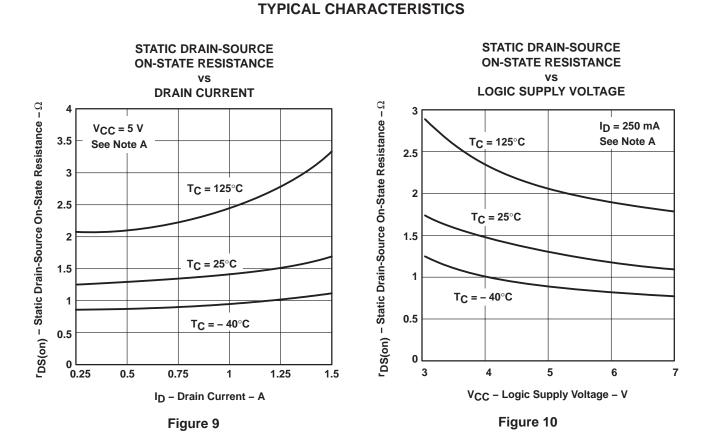

NOTES: A. The word generator has the following characteristics: $t_f \le 10 \text{ ns}, t_f \le 10 \text{ ns}, Z_O = 50 \Omega$. B. Input pulse duration, t_W , is increased until peak current $I_{AS} = 1 \text{ A}$. Energy test level is defined as $E_{AS} = I_{AS} \times V_{(BR)DSX} \times t_{av}/2 = 75 \text{ mJ}$, where t_{av} = avalanche time.

Figure 4. Single-Pulse Avalanche Energy Test Circuit and Waveforms


SLIS010B - APRIL 1992 - REVISED MAY 2005

TYPICAL CHARACTERISTICS

SLIS010B - APRIL 1992 - REVISED MAY 2005

700 tr 600 ^tPLH I_D = 250 mA 500 See Note A tf 400 300 200 ^tPHL

SWITCHING TIME vs FREE-AIR TEMPERATURE

50 T_A – Free-Air Temperature – °C

100

150

Figure 11

0

NOTE A: Technique should limit $T_J - T_C$ to 10°C maximum.

t - Switching Time - ns

100 - 50

SLIS010B - APRIL 1992 - REVISED MAY 2005

Revision History

DATE	REV	PAGE	SECTION	DESCRIPTION
5/18/05	В	5	Figure 1	Changed SRCLR timing diagram
10/1/96	А		—	—
4/1992	*			Original reversion

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

www.ti.com

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
TPIC6595DW	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
TPIC6595DWG4	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
TPIC6595DWR	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
TPIC6595DWRG4	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
TPIC6595N	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

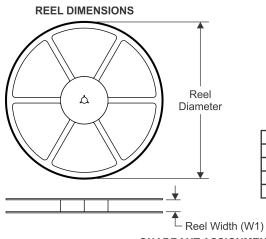
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

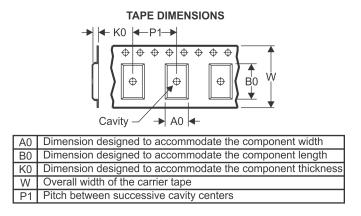
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


PACKAGE MATERIALS INFORMATION

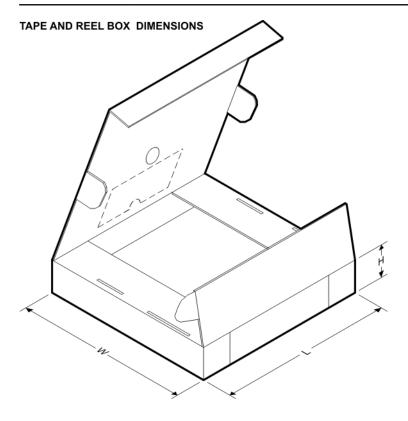
www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are no	minal

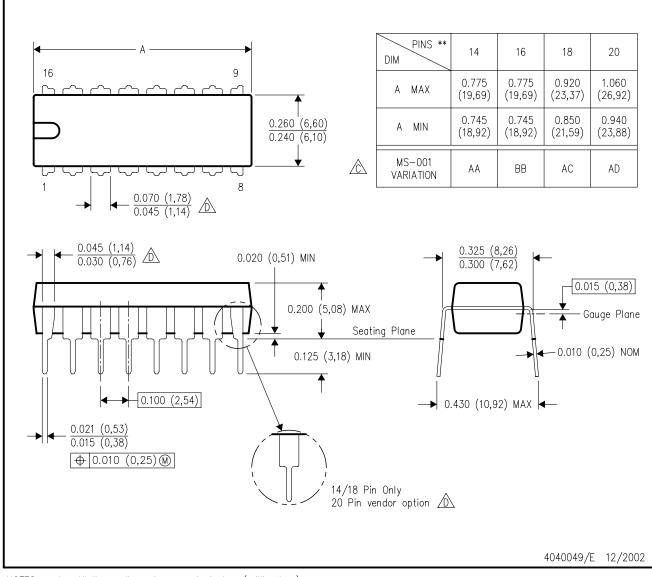

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPIC6595DWR	SOIC	DW	20	2000	330.0	24.4	10.8	13.3	2.7	12.0	24.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

4-Jan-2013

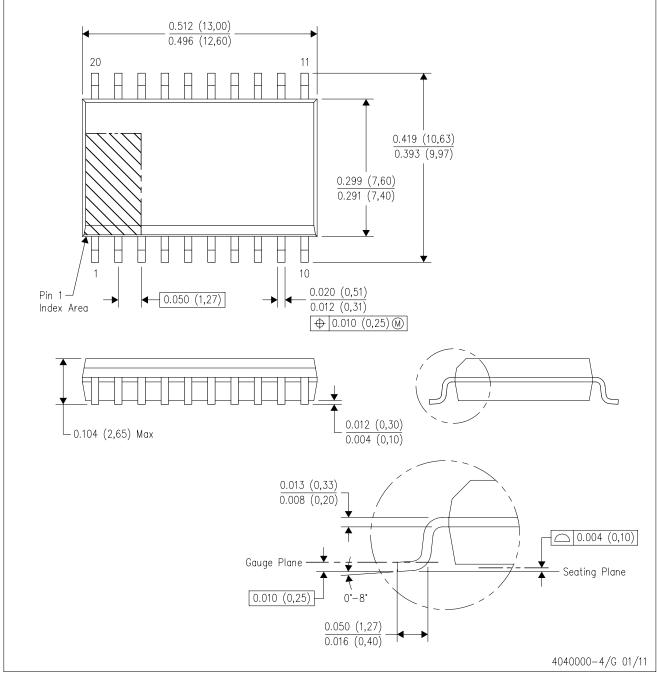

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPIC6595DWR	SOIC	DW	20	2000	367.0	367.0	45.0

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

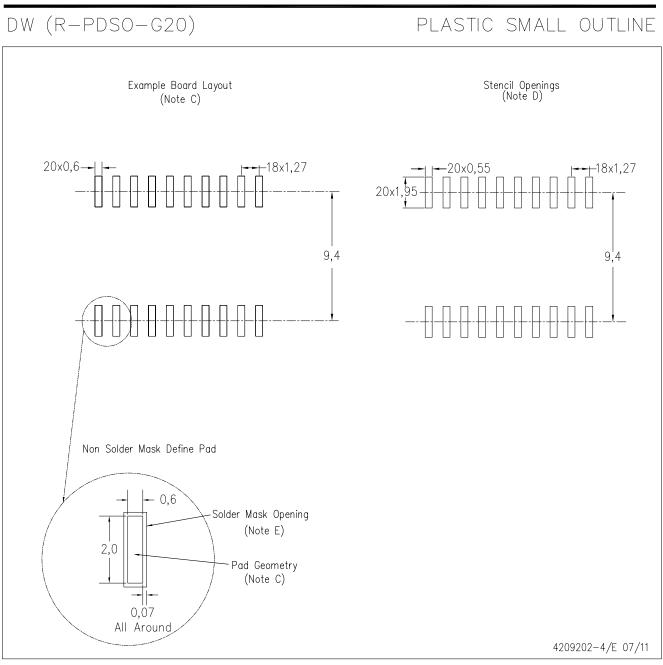

NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.

DW (R-PDSO-G20)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.


B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-013 variation AC.

LAND PATTERN DATA

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Refer to IPC7351 for alternate board design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconnectivity		

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated