

SNOSAP4F - SEPTEMBER 2005-REVISED MAY 2013

Single and Dual Precision, 17 MHz, Low Noise, CMOS Input Amplifiers

Check for Samples: LMP7711

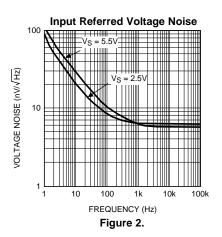
FEATURES

- Unless Otherwise Noted, Typical Values at V_S = 5V.
- Input Offset Voltage ±150 µV (Max)
- Input Bias Current 100 fA
- Input Voltage Noise 5.8 nV/VHz
- Gain Bandwidth Product 17 MHz
- Supply Current (LMP7711) 1.15 mA
- Supply Current (LMP7712) 1.30 mA
- Supply Voltage Range 1.8V to 5.5V
- THD+N @ f = 1 kHz 0.001%
- Operating Temperature Range -40°C to 125°C
- Rail-to-rail Output Swing
- Space Saving SOT Package (LMP7711)
- 10-pin VSSOP Package (LMP7712)

APPLICATIONS

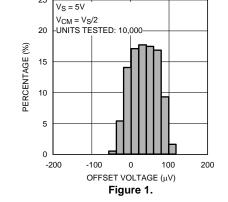
- Active Filters and Buffers
- **Sensor Interface Applications**
- **Transimpedance Amplifiers**

DESCRIPTION


The LMP7711/LMP7712 are single and dual low noise, low offset, CMOS input, rail-to-rail output precision amplifiers with a high gain bandwidth product and an enable pin. The LMP7711/LMP7712 are part of the LMP™ precision amplifier family and are ideal for a variety of instrumentation applications.

Utilizing a CMOS input stage, the LMP7711/LMP7712 achieve an input bias current of 100 fA, an input referred voltage noise of 5.8 nV/vHz, and an input offset voltage of less than ±150 µV. These features make the LMP7711/LMP7712 superior choices for precision applications.

Consuming only 1.15 mA of supply current, the LMP7711 offers a high gain bandwidth product of 17 MHz, enabling accurate amplification at high closed loop gains.


The LMP7711/LMP7712 have a supply voltage range of 1.8V to 5.5V, which makes these ideal choices for portable low power applications with low supply voltage requirements. In order to reduce the already low power consumption the LMP7711/LMP7712 have enable function. Once in shutdown, the an LMP7711/LMP7712 draw only 140 nA of supply current.

The LMP7711/LMP7712 are built with TI's advanced VIP50 process technology. The LMP7711 is offered in a 6-pin SOT package and the LMP7712 is offered in a 10-pin VSSOP.

TYPICAL PERFORMANCE

25

Offset Voltage Distribution

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet LMP is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

 $\Delta \Delta$

TEXAS INSTRUMENTS

www.ti.com

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

ABSOLUTE MAXIMUM RATINGS⁽¹⁾⁽²⁾

ESD Tolerance ⁽³⁾	Human Body Model	2000V
	Machine Model	200V
	Charge-Device Model	1000V
V _{IN} Differential	±0.3V	
Supply Voltage ($V_S = V^+ - V^-$)	6.0V	
Voltage on Input/Output Pins	V ⁺ +0.3V, V ⁻ -0.3V	
Storage Temperature Range	−65°C to 150°C	
Junction Temperature ⁽⁴⁾		+150°C
Soldering Information	Infrared or Convection (20 sec)	235°C
	Wave Soldering Lead Temp. (10 sec)	260°C

(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating ratings indicate conditions for which the device is functional, but do not ensure specific performance limits. Electrical Characteristics state electrical specifications under particular test conditions which ensure specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not ensured for parameters where no limit is given, however, the typical value is a good indication of device performance.

(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and specifications.

(3) Human Body Model, applicable std. MIL-STD-883, Method 3015.7. Machine Model, applicable std. JESD22-A115-A (ESD MM std. of JEDEC) Field-Induced Charge-Device Model, applicable std. JESD22-C101-C (ESD FICDM std. of JEDEC).

(4) The maximum power dissipation is a function of $T_{J(MAX)}$, θ_{JA} . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(MAX)} - T_A)/\theta_{JA}$. All numbers apply for packages soldered directly onto a PC Board.

OPERATING RATINGS⁽¹⁾

Temperature Range ⁽²⁾		-40°C to 125°C
Supply Voltage ($V_S = V^+ - V^-$)	$0^{\circ}C \le T_{A} \le 125^{\circ}C$	1.8V to 5.5V
	$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le 125^{\circ}\text{C}$	2.0V to 5.5V
Package Thermal Resistance ($\theta_{JA}^{(2)}$)	6-Pin SOT	170°C/W
	10-Pin VSSOP	236°C/W

(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating ratings indicate conditions for which the device is functional, but do not ensure specific performance limits. Electrical Characteristics state electrical specifications under particular test conditions which ensure specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not ensured for parameters where no limit is given, however, the typical value is a good indication of device performance.

(2) The maximum power dissipation is a function of $T_{J(MAX)}$, θ_{JA} . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(MAX)} - T_A)/\theta_{JA}$. All numbers apply for packages soldered directly onto a PC Board.

2.5V ELECTRICAL CHARACTERISTICS

Unless otherwise noted, all limits are ensured for $T_A = 25^{\circ}C$, $V^+ = 2.5V$, $V^- = 0V$, $V_O = V_{CM} = V^+/2$, $V_{EN} = V^+$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Co	onditions	Min ⁽¹⁾	Typ ⁽²⁾	Max ⁽¹⁾	Units
V _{OS}	Input Offset Voltage				±20	±180 ±480	μV
TC V _{OS}	Input Offset Voltage Temperature Drift ⁽³⁾⁽⁴⁾	LMP7711 LMP7712		-1.75	-1	±4	µV/°C
I _B	Input Bias Current	$V_{CM} = 1.0V^{(5)(4)}$	-40°C ≤ TA ≤ 85°C		0.05	1 25	-
			-40°C ≤ TA ≤ 125°C		0.05	1 100	– pA
I _{OS}	Input Offset Current	$V_{CM} = 1.0V^{(4)}$			0.006	0.5 50	pА
CMRR	Common Mode Rejection Ratio	$0V \le V_{CM} \le 1.4V$		83 80	100		dB
PSRR	Power Supply Rejection Ratio	$\begin{array}{l} 2.0 V \leq V^+ \leq 5.5 V \\ V^- = 0 V, \ V_{CM} = 0 \end{array}$		85 80	100		– dB
		$\begin{array}{l} 1.8 V \leq V^+ \leq 5.5 V \\ V^- = 0 V, \ V_{CM} = 0 \end{array}$		85	98		üВ
CMVR	Common Mode Voltage Range	CMRR ≥ 80 dB CMRR ≥ 78 dB		-0.3 -0.3		1.5 1.5	V
A _{VOL}	Open Loop Voltage Gain	LMP7711, $V_0 = 0.15$ to 2.2V R _L = 2 kΩ to V ⁺ /2		88 82	98		- dB
		LMP7712, $V_0 = 0.15$ to 2.2V R _L = 2 k Ω to V ⁺ /2		84 80	92		
		LMP7711, $V_0 = 0.15$ to 2.2V $R_L = 10 \text{ k}\Omega$ to V ⁺ /2		92 88	114		
	LMP7712, $V_0 = 0.15$ to 2.2V $R_L = 10 \text{ k}\Omega$ to V ⁺ /2		90 86	95			
V _{OUT}	Output Voltage Swing High	$R_L = 2 k\Omega$ to V ⁺ /2	$R_L = 2 k\Omega$ to V ⁺ /2		25	70 77	
		$R_L = 10 \text{ k}\Omega \text{ to V}^+/2$			20	60 66	mV from either rai
	Output Voltage Swing Low	$R_L = 2 k\Omega$ to V ⁺ /2			30	70 73	
		$R_L = 10 \text{ k}\Omega \text{ to } V^+/2$	2		15	60 62	
I _{OUT}	Output Current	$V_{IN} = 200 \text{ mV}^{(6)}$ 3 Sinking to V ⁺ 7.		36 30	52		
				7.5 5.0	15		- mA
I _S	Supply CurrentLMP7711Enable Mode $V_{EN} \ge 2.1$		≥ 2.1		0.95	1.30 1.65	
		LMP7712 (per cha Enable Mode V _{EN}			1.10	1.50 1.85	– mA
		Shutdown Mode ($V_{EN} \le 0.4$			0.03	1 4	μΑ
SR	Slew Rate	A _V = +1, Rising (10% to 90%)			8.3		\//ue
		$A_V = +1$, Falling (9	90% to 10%)		10.3		V/µs

(1) Limits are 100% production tested at 25°C. Limits over the operating temperature range are ensured through correlations using the Statistical Quality Control (SQC) method.

(2) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration. The typical values are not tested and are not ensured on shipped production material. Offset voltage average drift is determined by dividing the change in V_{OS} at the temperature extremes by the total temperature change.

(3)

This parameter is specified by design and/or characterization and is not tested in production. (4)

(5) Positive current corresponds to current flowing into the device.

The short circuit test is a momentary open loop test. (6)

Copyright © 2005–2013, Texas Instruments Incorporated

www.ti.com

2.5V ELECTRICAL CHARACTERISTICS (continued)

Unless otherwise noted, all limits are ensured for $T_A = 25^{\circ}C$, $V^+ = 2.5V$, $V^- = 0V$, $V_O = V_{CM} = V^+/2$, $V_{EN} = V^+$. **Boldface** limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Min ⁽¹⁾	Typ ⁽²⁾	Max ⁽¹⁾	Units	
GBW	Gain Bandwidth			14		MHz	
e _n	Input Referred Voltage Noise Density	f = 400 Hz		6.8		N// 1	
		f = 1 kHz		5.8		nV/√Hz	
i _n	Input Referred Current Noise Density	f = 1 kHz		0.01		pA/√Hz	
t _{on}	Turn-on Time			140		ns	
t _{off}	Turn-off Time			1000		ns	
V_{EN}	Enable Pin Voltage Range	Enable Mode	2.1	2 - 2.5		v	
		Shutdown Mode		0 - 0.5	0.4	V	
I _{EN}	Enable Pin Input Current	$V_{EN} = 2.5 V^{(5)}$		1.5	3.0		
		$V_{\sf EN} = 0V^{(5)}$		0.003	0.1	μA	
THD+N	Total Harmonic Distortion + Noise	$ f = 1 \text{ kHz}, \text{A}_{\text{V}} = 1, \text{R}_{\text{L}} = 100 \text{k} \Omega \\ \text{V}_{\text{O}} = 0.9 \text{V}_{\text{PP}} $		0.003		0/	
		$ f = 1 \text{ kHz}, \text{A}_{\text{V}} = 1, \text{R}_{\text{L}} = 600 \Omega \\ \text{V}_{\text{O}} = 0.9 \text{V}_{\text{PP}} $		0.004		%	

5V ELECTRICAL CHARACTERISTICS

Unless otherwise noted, all limits are ensured for $T_A = 25^{\circ}C$, $V^+ = 5V$, $V^- = 0V$, $V_{CM} = V^+/2$, $V_{EN} = V^+$. **Boldface** limits apply at the temperature extremes.

Symbol	Parameter	Co	onditions	Min ⁽¹⁾	Typ ⁽²⁾	Max ⁽¹⁾	Units	
V _{OS}	Input Offset Voltage				±10	±150 ±450	μV	
TC V_{OS}	Input Offset Voltage Temperataure Drift ⁽³⁾⁽⁴⁾	LMP7711	LMP7711					
	Drift ⁽³⁾⁽⁴⁾	LMP7712			-1	±4	µV/°C	
I _B	Input Bias Current	$V_{CM} = 2.0V^{(5)(4)}$	-40°C ≤ TA ≤ 85°C		0.1	1 25	рА	
			-40°C ≤ TA ≤ 125°C		0.1	1 100		
I _{OS}	Input Offset Current	$V_{CM} = 2.0V^{(4)}$			0.01	0.5 50	pА	
CMRR	Common Mode Rejection Ratio	$0V \le V_{CM} \le 3.7V$		85 82	100		dB	
PSRR	Power Supply Rejection Ratio	$2.0V \le V^+ \le 5.5V$ $V^- = 0V, V_{CM} = 0$		85 80	100		5	
		$\begin{array}{l} 1.8 V \leq V^+ \leq 5.5 V \\ V^- = 0 V, \ V_{CM} = 0 \end{array}$		85	98		dB	
CMVR	Common Mode Voltage Range	CMRR ≥ 80 dB CMRR ≥ 78 dB		-0.3 -0.3		4 4	V	

(1) Limits are 100% production tested at 25°C. Limits over the operating temperature range are ensured through correlations using the Statistical Quality Control (SQC) method.

- (2) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration. The typical values are not tested and are not ensured on shipped production material.
- (3) Offset voltage average drift is determined by dividing the change in V_{OS} at the temperature extremes by the total temperature change.
- (4) This parameter is specified by design and/or characterization and is not tested in production.
- (5) Positive current corresponds to current flowing into the device.
- 4 Submit Documentation Feedback

5V ELECTRICAL CHARACTERISTICS (continued)

Unless otherwise noted, all limits are ensured for $T_A = 25^{\circ}C$, $V^+ = 5V$, $V^- = 0V$, $V_{CM} = V^+/2$, $V_{EN} = V^+$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур ⁽²⁾	Max ⁽¹⁾	Units	
A _{VOL}	Open Loop Voltage Gain	LMP7711, $V_0 = 0.3$ to 4.7V R _L = 2 k Ω to V ⁺ /2	88 82	107			
		LMP7712, $V_0 = 0.3$ to 4.7V $R_L = 2 \ k\Omega$ to V ⁺ /2	84 80	90			
		LMP7711, $V_0 = 0.3$ to 4.7V R _L = 10 k Ω to V ⁺ /2	92 88	114		dB	
		LMP7712, $V_0 = 0.3$ to 4.7V R _L = 10 k Ω to V ⁺ /2	90 86	95			
V _{OUT}	Output Voltage Swing High	$R_L = 2 k\Omega$ to V ⁺ /2		32	70 77		
		$R_L = 10 \text{ k}\Omega \text{ to } V^+/2$		22	60 66	mV from either rail	
	Output Voltage Swing Low	$R_L = 2 k\Omega \text{ to V}^+/2$ (LMP7711)		42	70 73		
		$R_{L} = 2 k\Omega \text{ to V}^{+}/2$ (LMP7712)		50	75 78		
		$R_L = 10 \text{ k}\Omega$ to V ⁺ /2		20	60 62		
I _{OUT}	Output Current	Sourcing to V^- V _{IN} = 200 mV ⁽⁶⁾	46 38	66		– mA	
		Sinking to V ⁺ V _{IN} = -200 mV ⁽⁶⁾	10.5 6.5	23			
I _S	Supply Current	LMP7711 Enable Mode V _{EN} ≥ 4.6		1.15	1.40 1.75		
		LMP7712 (per channel) Enable Mode $V_{EN} \ge 4.6$		1.30	1.70 2.05	- mA	
		Shutdown Mode V _{EN} ≤ 0.4 (per channel)		0.14	1 4	μA	
SR	Slew Rate	$A_V = +1$, Rising (10% to 90%)	6.0	9.5		1///	
		$A_V = +1$, Falling (90% to 10%)	7.5	11.5		V/µs	
GBW	Gain Bandwidth			17		MHz	
e _n	Input Referred Voltage Noise Density	f = 400 Hz		7.0		nV/√Hz	
		f = 1 kHz		5.8			
i _n	Input Referred Current Noise Density	f = 1 kHz		0.01		pA/√Hz	
t _{on}	Turn-on Time			114		ns	
t _{off}	Turn-off Time			800		ns	
V _{EN}	Enable Pin Voltage Range	Enable Mode	4.6	4.5 – 5		v	
		Shutdown Mode		0 - 0.5	0.4	v	
I _{EN}	Enable Pin Input Current	$V_{EN} = 5V^{(7)}$		5.6	10	μA	
		$V_{EN} = 0V^{(7)}$		0.005	0.2	μ, ,	
THD+N	Total Harmonic Distortion + Noise	$ f = 1 \text{ kHz}, \text{A}_{\text{V}} = 1, \text{R}_{\text{L}} = 100 \text{k} \Omega \\ \text{V}_{\text{O}} = 4 \text{V}_{\text{PP}} $		0.001		- %	
		$ f = 1 \text{ kHz}, \text{A}_{\text{V}} = 1, \text{R}_{\text{L}} = 600 \Omega \\ \text{V}_{\text{O}} = 4 \text{V}_{\text{PP}} $		0.004		70	

(6) The short circuit test is a momentary open loop test.(7) Positive current corresponds to current flowing into the device.

TEXAS INSTRUMENTS

SNOSAP4F-SEPTEMBER 2005-REVISED MAY 2013

www.ti.com

CONNECTION DIAGRAM

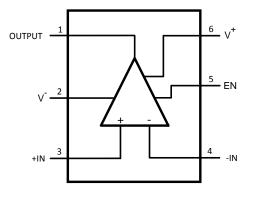
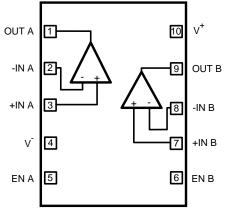
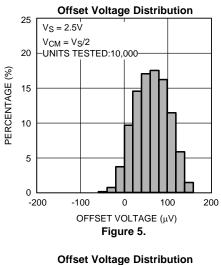
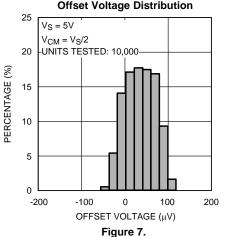
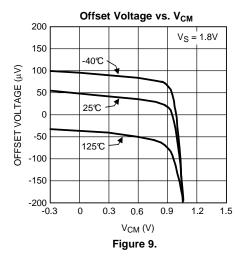


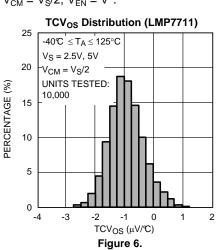
Figure 3. 6-Pin SOT - Top View See Package Number DDC

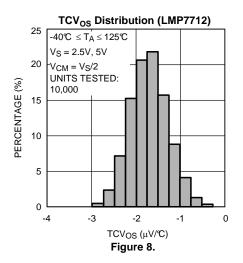


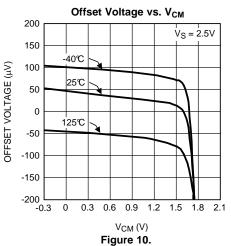

Figure 4. 10-Pin VSSOP-Top View See Package Number DGS




SNOSAP4F-SEPTEMBER 2005-REVISED MAY 2013


TYPICAL PERFORMANCE CHARACTERISTICS

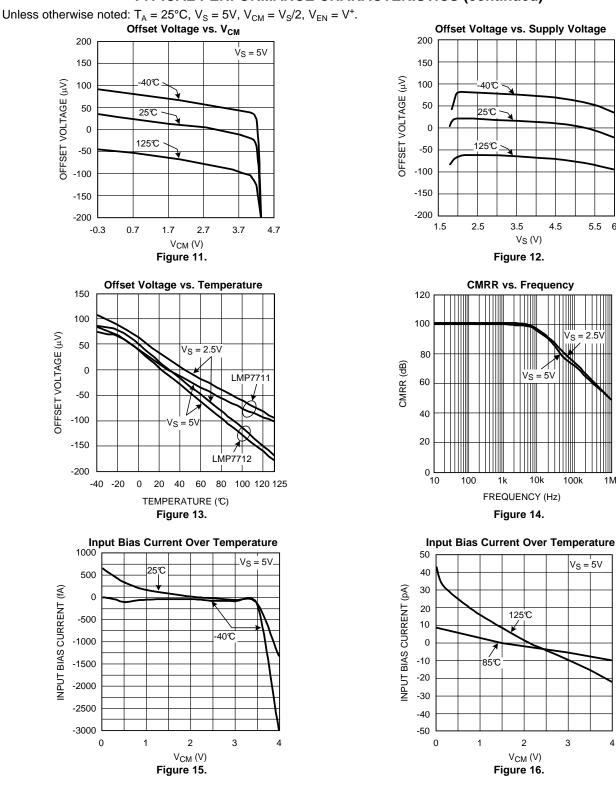

Unless otherwise noted: $T_A = 25^{\circ}C$, $V_S = 5V$, $V_{CM} = V_S/2$, $V_{EN} = V^+$.



EXAS **ISTRUMENTS**

5.5 6

25

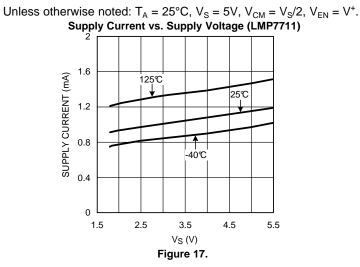

1M

4

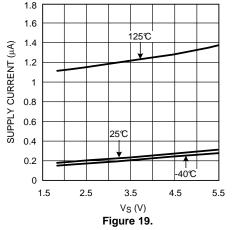
 $V_{S} = 5V$

www.ti.com

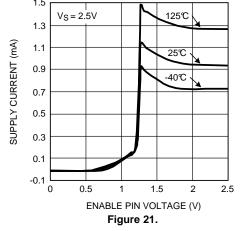
SNOSAP4F-SEPTEMBER 2005-REVISED MAY 2013

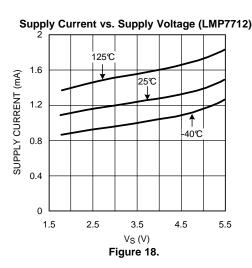


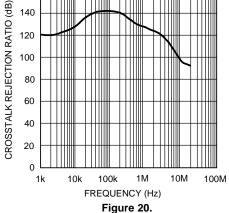
TYPICAL PERFORMANCE CHARACTERISTICS (continued)



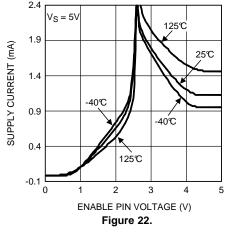
www.ti.com


TYPICAL PERFORMANCE CHARACTERISTICS (continued)

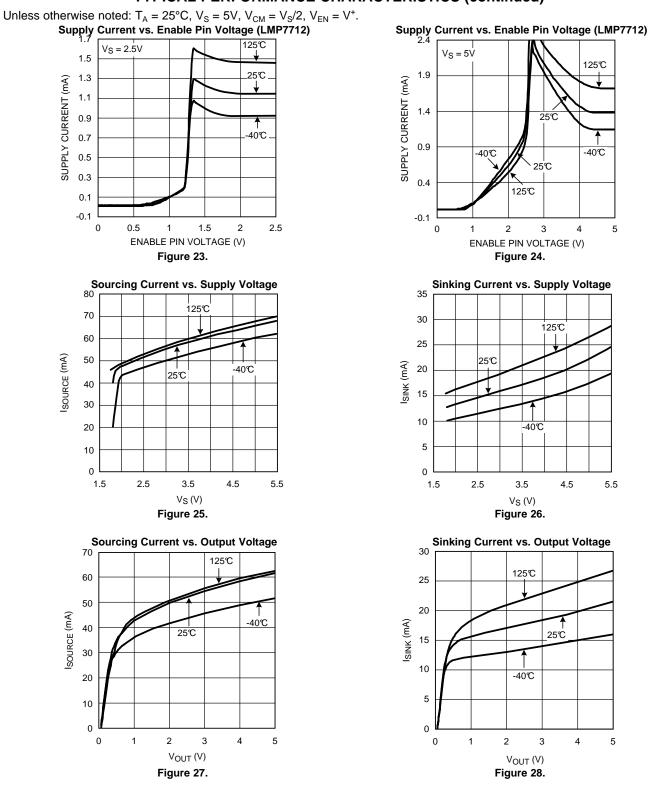




Supply Current vs. Enable Pin Voltage (LMP7711)

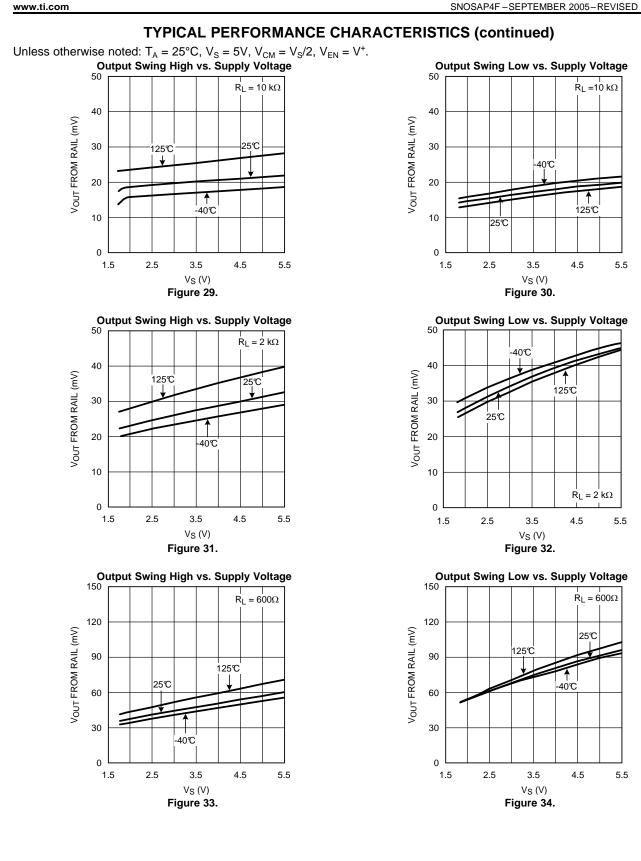


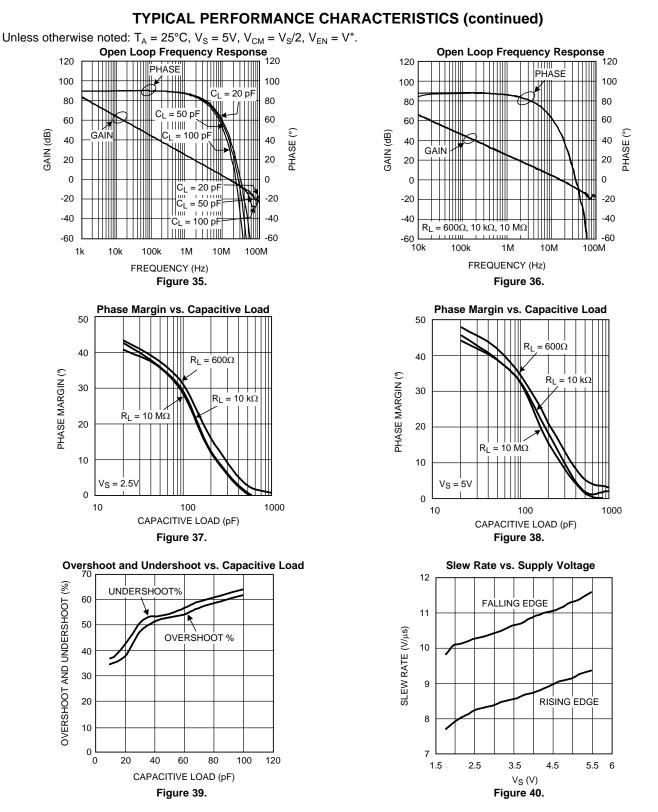
Supply Current vs. Enable Pin Voltage (LMP7711)



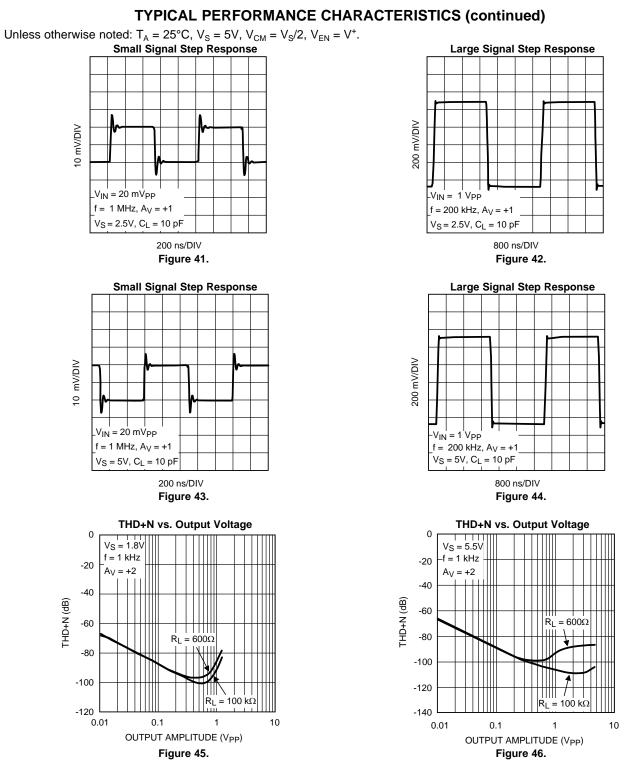
ÈXAS NSTRUMENTS

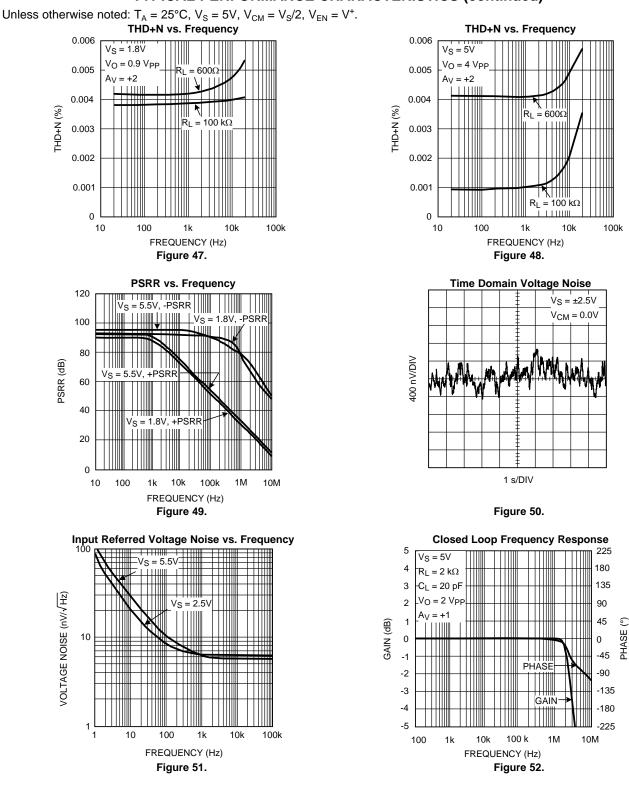
5


www.ti.com


SNOSAP4F-SEPTEMBER 2005-REVISED MAY 2013

TYPICAL PERFORMANCE CHARACTERISTICS (continued)


www.ti.com


ISTRUMENTS

ÈXAS

SNOSAP4F – SEPTEMBER 2005 – REVISED MAY 2013

ÈXAS

NSTRUMENTS

www.ti.com

SNOSAP4F-SEPTEMBER 2005-REVISED MAY 2013 TYPICAL PERFORMANCE CHARACTERISTICS (continued)

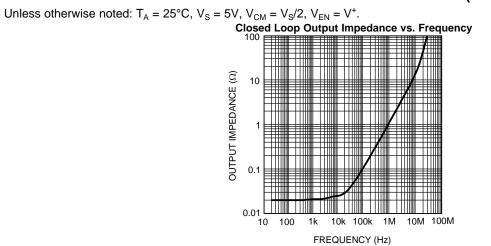


Figure 53.

www.ti.com

APPLICATION NOTES

LMP7711/LMP7712

The LMP7711/LMP7712 are single and dual, low noise, low offset, rail-to-rail output precision amplifiers with a wide gain bandwidth product of 17 MHz and low supply current. The wide bandwidth makes the LMP7711/LMP7712 ideal choices for wide-band amplification in portable applications. The low supply current along with the enable feature that is built-in on the LMP7711/LMP7712 allows for even more power efficient designs by turning the device off when not in use.

The LMP7711/LMP7712 are superior for sensor applications. The very low input referred voltage noise of only 5.8 nV/ \sqrt{Hz} at 1 kHz and very low input referred current noise of only 10 fA/ \sqrt{Hz} mean more signal fidelity and higher signal-to-noise ratio.

The LMP7711/LMP7712 have a supply voltage range of 1.8V to 5.5V over a wide temperature range of 0°C to 125°C. This is optimal for low voltage commercial applications. For applications where the ambient temperature might be less than 0°C, the LMP7711/LMP7712 are fully operational at supply voltages of 2.0V to 5.5V over the temperature range of -40°C to 125°C.

The outputs of the LMP7711/LMP7712 swing within 25 mV of either rail providing maximum dynamic range in applications requiring low supply voltage. The input common mode range of the LMP7711/LMP7712 extends to 300 mV below ground. This feature enables users to utilize this device in single supply applications.

The use of a very innovative feedback topology has enhanced the current drive capability of the LMP7711/LMP7712, resulting in sourcing currents as much as 47 mA with a supply voltage of only 1.8V.

The LMP7711 is offered in the space saving SOT package and the LMP7712 is offered in a 10-pin VSSOP. These small packages are ideal solutions for applications requiring minimum PC board footprint.

Texas Instruments is heavily committed to precision amplifiers and the market segments they serves. Technical support and extensive characterization data is available for sensitive applications or applications with a constrained error budget.

CAPACITIVE LOAD

The unity gain follower is the most sensitive configuration to capacitive loading. The combination of a capacitive load placed directly on the output of an amplifier along with the output impedance of the amplifier creates a phase lag which in turn reduces the phase margin of the amplifier. If phase margin is significantly reduced, the response will be either underdamped or the amplifier will oscillate.

The LMP7711/LMP7712 can directly drive capacitive loads of up to 120 pF without oscillating. To drive heavier capacitive loads, an isolation resistor, R_{ISO} in Figure 54, should be used. This resistor and C_L form a pole and hence delay the phase lag or increase the phase margin of the overall system. The larger the value of R_{ISO} , the more stable the output voltage will be. However, larger values of R_{ISO} result in reduced output swing and reduced output current drive.

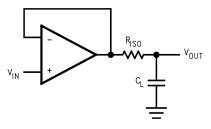


Figure 54. Isolating Capacitive Load

INPUT CAPACITANCE

CMOS input stages inherently have low input bias current and higher input referred voltage noise. The LMP7711/LMP7712 enhance this performance by having the low input bias current of only 50 fA, as well as, a very low input referred voltage noise of 5.8 nV/ \sqrt{Hz} . In order to achieve this a larger input stage has been used. This larger input stage increases the input capacitance of the LMP7711/LMP7712. Figure 55 shows typical input common mode input capacitance of the LMP7711/LMP7712.

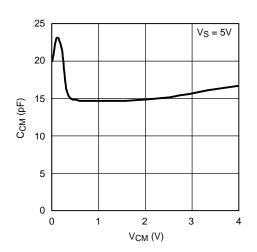
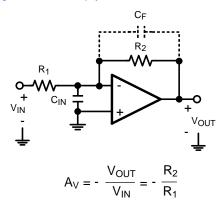



Figure 55. Input Common Mode Capacitance

This input capacitance will interact with other impedances such as gain and feedback resistors, which are seen on the inputs of the amplifier to form a pole. This pole will have little or no effect on the output of the amplifier at low frequencies and under DC conditions, but will play a bigger role as the frequency increases. At higher frequencies, the presence of this pole will decrease phase margin and also causes gain peaking. In order to compensate for the input capacitance, care must be taken in choosing feedback resistors. In addition to being selective in picking values for the feedback resistor, a capacitor can be added to the feedback path to increase stability.

The DC gain of the circuit shown in Figure 56 is simply $-R_2/R_1$.

For the time being, ignore C_F . The AC gain of the circuit in Figure 56 can be calculated as follows:

$$\frac{V_{OUT}}{V_{IN}}(s) = \frac{-R_2/R_1}{\left[1 + \frac{s}{\left(\frac{A_0 R_1}{R_1 + R_2}\right)} + \frac{s^2}{\left(\frac{A_0}{C_{IN} R_2}\right)}\right]}$$

This equation is rearranged to find the location of the two poles:

$$P_{1,2} = \frac{-1}{2C_{IN}} \left[\frac{1}{R_1} + \frac{1}{R_2} \pm \sqrt{\left(\frac{1}{R_1} + \frac{1}{R_2}\right)^2 - \frac{4A_0C_{IN}}{R_2}} \right]$$

(2)

(1)

TEXAS INSTRUMENTS

SNOSAP4F-SEPTEMBER 2005-REVISED MAY 2013

www.ti.com

As shown in Equation 2, as the values of R_1 and R_2 are increased, the magnitude of the poles are reduced, which in turn decreases the bandwidth of the amplifier. Figure 57 shows the frequency response with different value resistors for R_1 and R_2 . Whenever possible, it is best to chose smaller feedback resistors.

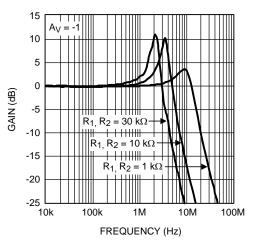


Figure 57. Closed Loop Frequency Response

As mentioned before, adding a capacitor to the feedback path will decrease the peaking. This is because C_F will form yet another pole in the system and will prevent pairs of poles, or complex conjugates from forming. It is the presence of pairs of poles that cause the peaking of gain. Figure 58 shows the frequency response of the schematic presented in Figure 56 with different values of C_F . As can be seen, using a small value capacitor significantly reduces or eliminates the peaking.

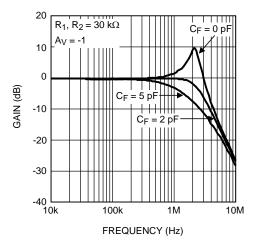


Figure 58. Closed Loop Frequency Response

TRANSIMPEDANCE AMPLIFIER

In many applications, the signal of interest is a very small amount of current that needs to be detected. Current that is transmitted through a photodiode is a good example. Barcode scanners, light meters, fiber optic receivers, and industrial sensors are some typical applications utilizing photodiodes for current detection. This current needs to be amplified before it can be further processed. This amplification is performed using a current-to-voltage converter configuration or transimpedance amplifier. The signal of interest is fed to the inverting input of an op amp with a feedback resistor in the current path. The voltage at the output of this amplifier will be equal to the negative of the input current times the value of the feedback resistor. Figure 59 shows a transimpedance amplifier configuration. C_D represents the photodiode parasitic capacitance and C_{CM} denotes the common-mode capacitance of the amplifier. The presence of all of these capacitances at higher frequencies might lead to less stable topologies at higher frequencies. Care must be taken when designing a transimpedance amplifier to prevent the circuit from oscillating.

With a wide gain bandwidth product, low input bias current and low input voltage and current noise, the LMP7711/LMP7712 are ideal for wideband transimpedance applications.

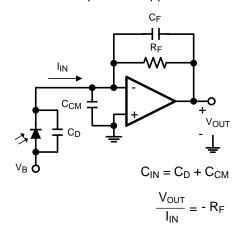


Figure 59. Transimpedance Amplifier

A feedback capacitance C_F is usually added in parallel with R_F to maintain circuit stability and to control the frequency response. To achieve a maximally flat, 2nd order response, R_F and C_F should be chosen by using Equation 3

$$C_{\rm F} = \sqrt{\frac{C_{\rm IN}}{GBWP * 2 \pi R_{\rm F}}}$$
(3)

Calculating C_F from Equation 3 can sometimes result in capacitor values which are less than 2 pF. This is especially the case for high speed applications. In these instances, its often more practical to use the circuit shown in Figure 60 in order to allow more sensible choices for C_F. The new feedback capacitor, C'_F, is (1+ R_B/R_A) C_F. This relationship holds as long as $R_A << R_F$.

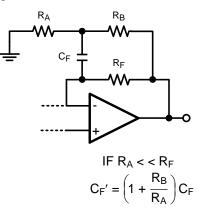


Figure 60. Modified Transimpedance Amplifier

SENSOR INTERFACE

The LMP7711/LMP7712 have low input bias current and low input referred noise, which make them ideal choices for sensor interfaces such as thermopiles, Infra Red (IR) thermometry, thermocouple amplifiers, and pH electrode buffers.

Thermopiles generate voltage in response to receiving radiation. These voltages are often only a few microvolts. As a result, the operational amplifier used for this application needs to have low offset voltage, low input voltage noise, and low input bias current. Figure 61 shows a thermopile application where the sensor detects radiation from a distance and generates a voltage that is proportional to the intensity of the radiation. The two resistors, R_A and R_B , are selected to provide high gain to amplify this signal, while C_F removes the high frequency noise.

SNOSAP4F-SEPTEMBER 2005-REVISED MAY 2013

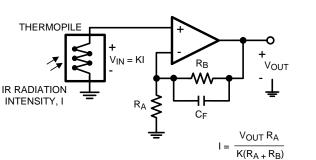


Figure 61. Thermopile Sensor Interface

PRECISION RECTIFIER

Rectifiers are electrical circuits used for converting AC signals to DC signals. Figure 62 shows a full-wave precision rectifier. Each operational amplifier used in this circuit has a diode on its output. This means for the diodes to conduct, the output of the amplifier needs to be positive with respect to ground. If V_{IN} is in its positive half cycle then only the output of the bottom amplifier will be positive. As a result, the diode on the output of the bottom amplifier will show at the output of the circuit. If V_{IN} is in its negative half cycle then the output of the top amplifier will be positive, resulting in the diode on the output of the top amplifier conducting and, delivering the signal on the amplifier's output to the circuits output.

For $R_2/R_1 \ge 2$, the resistor values can be found by using the equation shown in Figure 62. If $R_2/R_1 = 1$, then R_3 should be left open, no resistor needed, and R_4 should simply be shorted.

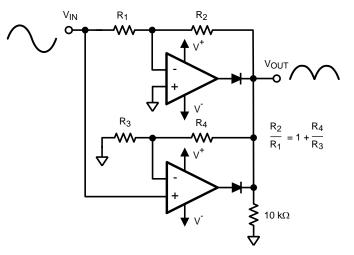


Figure 62. Precision Rectifier

SNOSAP4F - SEPTEMBER 2005 - REVISED MAY 2013

REVISION HISTORY

Cł	hanges from Revision E (May 2013) to Revision F	Page
•	Changed layout of National Data Sheet to TI format.	20

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated