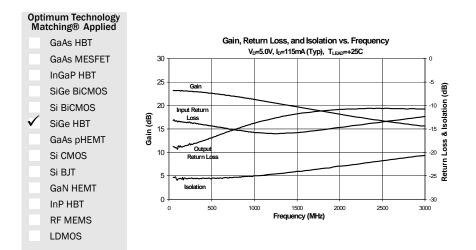

SGA7489Z

rfmd.com


DC to 3000 MHz SILICON GERMANIUM HBT CASCADABLE GAIN BLOCK

Product Description

The SGA7489Z is a high performance SiGe HBT MMIC Amplifier. A Darlington configuration featuring one-micron emitters provides high $F_{\rm T}$ and excellent thermal performance. The heterojunction increases breakdown voltage and minimizes leakage current between junctions. Cancellation of emitter junction non-linearities results in higher suppression of intermodulation products. Only two DC-blocking capacitors, a bias resistor, and an optional RF choke are required for operation.

Features

- DC to 3000MHz Operation
- Very High IF Output IP₃: 39dBm at 100MHz
- High Output IP₃: +35.5dBm typ. at 850MHz
- Low Noise Figure: 3.3dB typ. at 1950MHz

Applications

- Oscillator Amplifiers
- PA for Low/Medium Power Applications
- IF/RF Buffer Amplifier
- Drivers for CATV Amplifiers
- LO Driver Amplifier

Devenator	Specification			11	O and it i an
Parameter	Min.	Тур.	Max.	Unit	Condition
Small Signal Gain	20.0	21.5	23.0	dB	850MHz
	17.0	18.5	20.0	dB	1950MHz
Output Power at 1dB Compression		22.4		dBm	850MHz
	18.5	20.0		dBm	1950MHz
Output Third Intercept Point		39.0		dBm	100 MHz
		35.5		dBm	850MHz
	31.0	33.0		dBm	1950MHz
		36.0*		dBm	1950MHz, Using 2GHz App. Ckt.
Bandwidth Determined by Return Loss		3000		MHz	>9dB
Input Return Loss	10.3	15.0		dB	1950MHz
Output Return Loss	9.0	11.0		dB	1950MHz
Noise Figure		3.3	4.3	dB	1950MHz, Z _S =50Ω
Reverse Isolation		23.0		dB	1950MHz
Device Operating Voltage	4.7	5.0	5.3	V	
Device Operating Current	103	115	127	mA	
Thermal Resistance (Junction - Lead)		82		°C/W	

Test Conditions: V_S=8V, I_D=115mA Typ., OIP₃ Tone Spacing=1MHz, P_{OUT} per tone=0dBm, R_{BIAS}=26 Ω , T_L=25°C, Z_S=Z_L=50 Ω

RF MICRO DEVICES®, RFMD®, Optimum Technology Matching®, Enabling Wireless Connectivity^{IM}, PowerStar®, POLARIS^{IM} TOTAL RADIO^{IM} and UttimateBlue^{IM} are trademarks of RFMD, LLC. BLUETOOTH is a trademark owned by Bluetooth SIG, Inc., U.S.A, and licensed for use by RFMD. All other trade names, trademarks and registered trademarks are the property of their respective owners, ©2006, RF Micro Devices, Inc.

SGA7489Z

Caution! ESD sensitive device.

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical perfor-mance or functional operation of the device under Absolute Maximum Rating condi-tions is not implied.

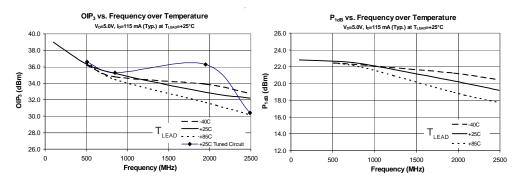
RoHS status based on EUDirective2002/95/EC (at time of this document revision).

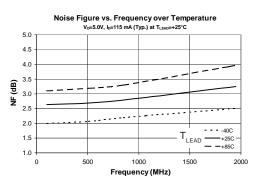
The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

Absolute Maximum Ratings

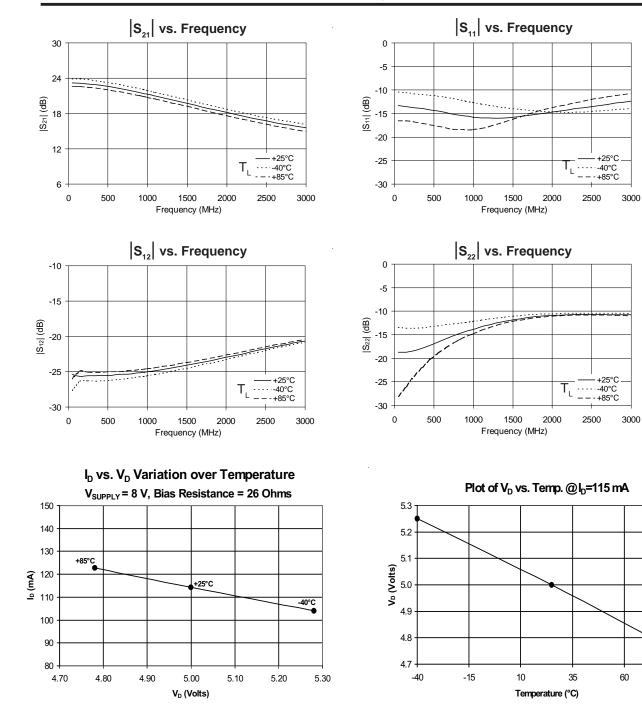
•		
Parameter	Rating	Unit
Max Device Current (I _D)	170	mA
Max Device Voltage (V _D)	7	V
Max RF Input Power, Z_L =50 Ω	+16	dBm
Max RF Input Power, Load VSWR=10:1*	+2	dBm
Max Junction Temp (T _J)	+150	°C
Operating Temp Range (T_L)	-40 to +85	°C
Max Storage Temp	+150	°C
Moisture Sensitivity Level	MSL 2	

*Note: Take into account out of band load VSWR presented by devices such as SAW filters to determine maximum RF input power. Reflected harmonic levels in saturation are significant.


Operation of this device beyond any one of these limits may cause permanent damage. For reliable continuous operation, the device voltage and current must not exceed the maximum operating values specified in the table on page one. Bias Conditions should also satisfy the following expression:


 $I_{\rm D}V_{\rm D} < (T_{\rm J} - T_{\rm L}) / R_{\rm TH}$, j-l

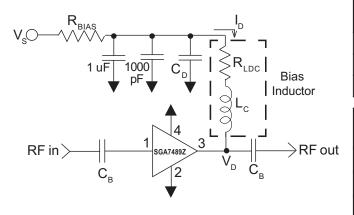
Typical Performance at Key Operating Frequencies


Parameter	Unit	100	500	850	1950	2400
		MHz	MHz	MHz	MHz	MHz
Small Signal Gain	dB	23.0	22.5	21.5	18.5	17.0
Output Third Order Intercept Point	dBm	39.0	36.5	35.5	33.0*	32.2
Output Power at 1dB Compression	dBm	22.8	22.6	22.4	20.0	19.0
Input Return Loss	dB	13.5	14.5	15.5	15.0	13.5
Output Return Loss	dB	19.5	17.0	14.5	11.0	10.5
Reverse Isolation	dB	26.0	25.5	25.0	23.0	22.0
Noise figure	dB	2.7	2.7	2.8	3.3	

Test Conditions: V_S=8V, ID=115 mA Typ., OIP₃ Tone Spacing=1MHz, P_{OUT} per tone=0dBm, Bias Resistance=26 Ω , T_L=25°C, Z_S=Z_L=50 Ω *Note: An OIP₃ of +36dBm at 1950MHz is achieved using the tuned circuit

Typical RF Performance Over Temperature (Bias: V_s = 8.0 V, Bias Resistance=26 Ohms, I_p = 115 mA)

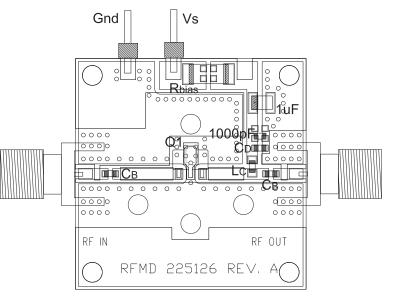
85


SGA7489Z

RFMD ໜ

rfmd.com

Pin	Function	Description
1	RF IN	RF input pin. This pin requires the use of an external DC blocking capacitor chosen for the frequency of operation.
2, 4	GND	Connection to ground. Use via holes for best performance to reduce lead inductance as close to ground leads as possible.
3	RF OUT/BIAS	RF output and bias pin. DC voltage is present on this pin, therefore a DC blocking capacitor is necessary for proper oper- ation.

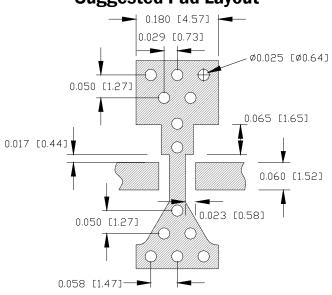

Application Schematic

Reference	Frequency (Mhz)							
Designator	100	500	850	1950	2400			
C _B	1000 pF	220 pF	100 pF	68 pF	56 pF			
C _D	100 pF	100 pF	68 pF	22 pF	22 pF			
L _c	470 nH	68 nH	33 nH	22 nH	18 nH			

Required Bias Resistance for I_p =115mA Bias Resistance = R_{BIAS} + R_{LDC} = (V_{s} - V_{p}) / I_{p}					
Supply Voltage(V_s)	7 V	8 V	9 V	12 V	
Bias Resistance 17Ω 26Ω 35Ω 61Ω					
Bias resistor improves current stability over temperature.					

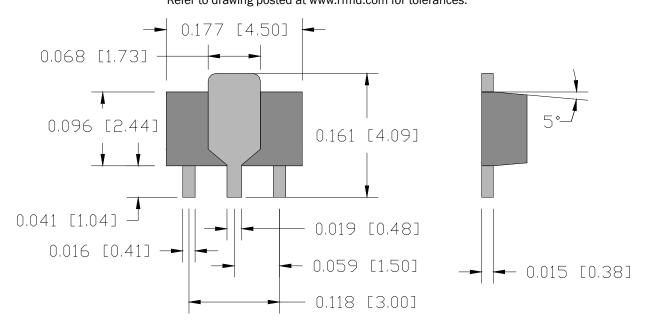
Evaluation Board Layout

Mounting Instructions:


1. Solder the copper pad on the backside of the device package to the ground plane.

2. Use a large ground pad area with many plated through-holes as shown.

3. We recommend 1 or 2 ounce copper. Measurements for this data sheet were made on a 31mil thick FR-4 board with 1 ounce copper on both sides.



Suggested Pad Layout

Package Drawing

Dimensions in inches (millimeters) Refer to drawing posted at www.rfmd.com for tolerances.

Part Identification

Alternate marking is SGA7489Z on line 1 with Trace Code on line 2.

Ordering Information

Ordering Code	Description
SGA7489Z	13" Reel with 3000 pieces
SGA7489ZSQ	Sample bag with 25 pieces
SGA7489ZSR	7" Reel with 100 pieces
SGA7489ZPCK1	850MHz, 8V Operation PCBA with 5-piece sample bag