Octal 3-State Noninverting Buffer/Line Driver/Line Receiver

High-Performance Silicon-Gate CMOS

The MC74HC541A is identical in pinout to the LS541. The device inputs are compatible with Standard CMOS outputs. External pull-up resistors make them compatible with LSTTL outputs.

The HC541A is an octal noninverting buffer/line driver/line receiver designed to be used with 3-state memory address drivers, clock drivers, and other bus-oriented systems. This device features inputs and outputs on opposite sides of the package and two ANDed active-low output enables.

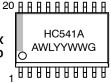
The HC541A is similar in function to the HC540A, which has inverting outputs.

Features

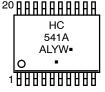
- Output Drive Capability: 15 LSTTL Loads
- Outputs Directly Interface to CMOS, NMOS and TTL
- Operating Voltage Range: 2.0 to 6.0 V
- Low Input Current: 1 μA
- High Noise Immunity Characteristic of CMOS Devices
- In Compliance With the JEDEC Standard No. 7 A Requirements
- Chip Complexity: 134 FETs or 33.5 Equivalent Gates
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

ON Semiconductor®

http://onsemi.com


MARKING DIAGRAMS

PDIP-20 N SUFFIX CASE 738 20 AAAAAAAAAAA MC74HC541AN O AWLYYWWG


SOIC-20 DW SUFFIX CASE 751D

1

TSSOP-20 DT SUFFIX CASE 948E

A = Assembly Location

WL, L = Wafer Lot YY, Y = Year WW, W = Work Week G or ■ = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

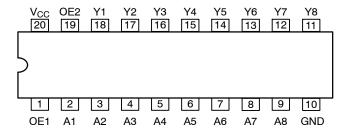


Figure 1. Pinout: 20-Lead Packages (Top View)

FUNCTION TABLE

	Inputs		O
OE1 OE2		Α	Output Y
L	L	L	L
L	L	Н	Н
Н	X	Х	Z
Х	Н	Х	Z

X = Don't Care

Z = High Impedance

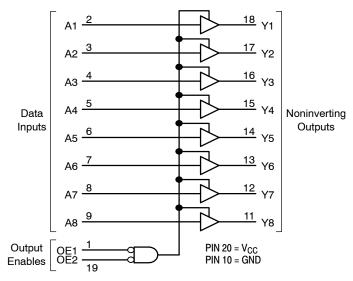


Figure 2. Logic Diagram

ORDERING INFORMATION

Device	Package	Shipping [†]	
MC74HC541ANG	PDIP-20 (Pb-Free)	18 Units / Rail	
MC74HC541ADWG		38 Units / Rail	
MC74HC541ADWR2G	SOIC-20 WIDE (Pb-Free)	1000 Tape & Reel	
NLV74HC541ADWR2G*	(12 1100)		
MC74HC541ADTG		75 Units / Rail	
MC74HC541ADTR2G	TSSOP-20 (Pb-Free)	2500 Tape & Reel	
NLV74HC541ADTR2G*	(. 2 1165)		

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*}NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

MAXIMUM RATINGS

Symbol		Value	Unit	
V _{CC}	DC Supply Voltage		-0.5 to +7.0	V
VI	DC Input Voltage		$-0.5 \le V_{I} \le V_{CC} + 0.5$	V
Vo	DC Output Voltage (Note 1)		$-0.5 \le V_{O} \le V_{CC} + 0.5$	V
I _{IK}	DC Input Diode Current		±20	mA
I _{OK}	DC Output Diode Current		±35	mA
IO	DC Output Sink Current		±35	mA
I _{CC}	DC Supply Current per Supply Pin		±75	mA
I _{GND}	DC Ground Current per Ground Pin		±75	mA
T _{STG}	Storage Temperature Range		-65 to +150	°C
TL	Lead Temperature, 1 mm from Case	for 10 Seconds	260	°C
TJ	Junction Temperature under Bias		+ 150	°C
$\theta_{\sf JA}$	Thermal Resistance	PDIP SOIC TSSOP	67 96 128	°C/W
P _D	Power Dissipation in Still Air at 85°C	PDIP SOIC TSSOP	750 500 450	mW
MSL	Moisture Sensitivity		Level 1	
F _R	Flammability Rating	Oxygen Index: 30% - 35%	UL 94 V-0 @ 0.125 in	
V _{ESD}	ESD Withstand Voltage	Human Body Model (Note 2) Machine Model (Note 3) Charged Device Model (Note 4)	> 4000 > 300 > 1000	٧
I _{Latchup}	Latchup Performance	Above V _{CC} and Below GND at 85°C (Note 5)	±300	mA

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. I_O absolute maximum rating must be observed.

- 2. Tested to EIA/JESD22-A114-A.
- 3. Tested to EIA/JESD22-A115-A.
- 4. Tested to JESD22-C101-A.
- 5. Tested to EIA/JESD78.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Max	Unit
V _{CC}	DC Supply Voltage	(Referenced to GND)	2.0	6.0	V
V _{IN} , V _{OUT}	DC Input Voltage, Output Voltage	(Referenced to GND)	0	V _{CC}	V
T _A	Operating Temperature Range, All Package Types		- 55	+ 125	°C
t _r , t _f	Input Rise/Fall Time (Figure 3)	V _{CC} = 2.0 V V _{CC} = 4.5 V V _{CC} = 6.0 V	0 0 0	1000 500 400	ns

6. Unused inputs may not be left open. All inputs must be tied to a high-logic voltage level or a low-logic input voltage level.

DC CHARACTERISTICS (Voltages Referenced to GND)

				Gua	ranteed Li	imit	
Symbol	Parameter	Condition	V _{CC}	−55 to 25°C	≤85°C	≤125°C	Unit
V _{IH}	Minimum High-Level Input Voltage	$V_{OUT} = 0.1 \text{ V}$ $ I_{OUT} \le 20 \mu\text{A}$	2.0 3.0 4.5 6.0	1.50 2.10 3.15 4.20	1.50 2.10 3.15 4.20	1.50 2.10 3.15 4.20	V
V _{IL}	Maximum Low-Level Input Voltage	$V_{OUT} = V_{CC} - 0.1 \text{ V}$ $ I_{OUT} \le 20 \mu\text{A}$	2.0 3.0 4.5 6.0	0.50 0.90 1.35 1.80	0.50 0.90 1.35 1.80	0.50 0.90 1.35 1.80	V
V _{OH}	Minimum High-Level Output Voltage	$V_{IN} = V_{IL}$ $ I_{OUT} \le 20 \mu A$	2.0 4.5 6.0	1.9 4.4 5.9	1.9 4.4 5.9	1.9 4.4 5.9	V
			3.0 4.5 6.0	2.48 3.98 5.48	2.34 3.84 5.34	2.20 3.70 5.20	
V _{OL}	Maximum Low-Level Output Voltage	$ V_{IN} = V_{IH} $ $ I_{OUT} \le 20 \mu A $	2.0 4.5 6.0	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	V
			3.0 4.5 6.0	0.26 0.26 0.26	0.33 0.33 0.33	0.40 0.40 0.40	
I _{IN}	Maximum Input Leakage Current	V _{IN} = V _{CC} or GND	6.0	±0.1	±1.0	±1.0	μΑ
l _{OZ}	Maximum 3-State Leakage Current	Output in High Impedance State $V_{IN} = V_{IL}$ or V_{IH} $V_{OUT} = V_{CC}$ or GND	6.0	±0.5	±5.0	±10.0	μΑ
I _{CC}	Maximum Quiescent Supply Current (per Package)	$V_{IN} = V_{CC}$ or GND $I_{OUT} = 0 \mu A$	6.0	4	40	160	μΑ

AC CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 6 \text{ ns}$)

			Guaranteed Limit			
Symbol	Parameter	V _{CC} V	−55 to 25°C	≤85°C	≤125°C	Unit
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Input A to Output Y (Figures 3 and 5)	2.0 3.0 4.5 6.0	80 30 18 15	100 40 23 20	120 55 28 25	ns
t _{PLZ} , t _{PHZ}	Maximum Propagation Delay, Output Enable to Output Y (Figures 4 and 6)	2.0 3.0 4.5 6.0	110 45 25 21	140 60 31 26	165 75 38 31	ns
t _{PZL} , t _{PZH}	Maximum Propagation Delay, Output Enable to Output Y (Figures 4 and 6)	2.0 3.0 4.5 6.0	110 45 25 21	140 60 31 26	165 75 38 31	ns
t _{TLH} , t _{THL}	Maximum Output Transition Time, Any Output (Figures 3 and 5)	2.0 3.0 4.5 6.0	60 22 12 10	75 28 15 13	90 34 18 15	ns
C _{IN}	Maximum Input Capacitance		10	10	10	pF
C _{OUT}	Maximum 3-State Output Capacitance (High Impedance State Output)		15	15	15	pF

		Typical @ 25°C, V _{CC} = 5.0 V, V _{EE} = 0 V	
C_{PD}	Power Dissipation Capacitance (Per Buffer) (Note 7)	35	pF

^{7.} Used to determine the no–load dynamic power consumption: $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$.

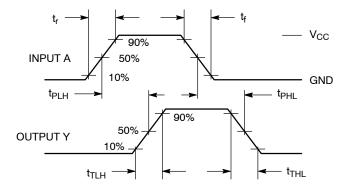


Figure 3. Switching Waveform

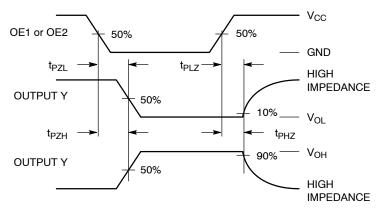
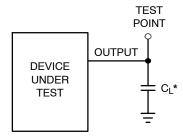
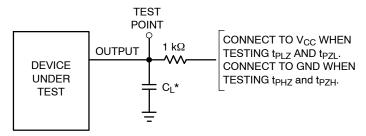




Figure 4. Switching Waveform

*Includes all probe and jig capacitance

Figure 5. Test Circuit

*Includes all probe and jig capacitance

Figure 6. Test Circuit

PIN DESCRIPTIONS

INPUTS

A1, A2, A3, A4, A5, A6, A7, A8 (PINS 2, 3, 4, 5, 6, 7, 8, 9)

Data input pins. Data on these pins appear in non-inverted form on the corresponding Y outputs, when the outputs are enabled.

CONTROLS

OE1, OE2 (PINS 1, 19)

Output enables (active-low). When a low voltage is applied to both of these pins, the outputs are enabled and the

device functions as an non-inverting buffer. When a high voltage is applied to either input, the outputs assume the high impedance state.

OUTPUTS

Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8 (PINS 18, 17, 16, 15, 14, 13, 12, 11)

Device outputs. Depending upon the state of the output enable pins, these outputs are either non-inverting outputs or high-impedance outputs.

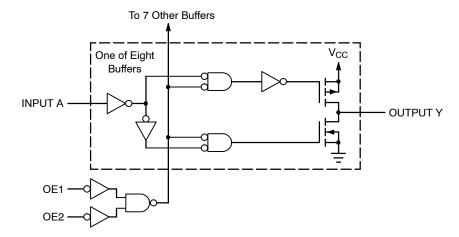
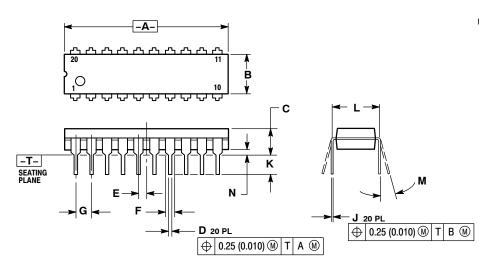



Figure 7. Logic Detail

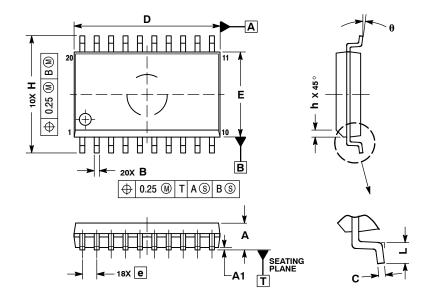
PACKAGE DIMENSIONS

PDIP-20 **N SUFFIX** PLASTIC DIP PACKAGE CASE 738-03 **ISSUE E**

NOTES:

- IOTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.


 2. CONTROLLING DIMENSION: INCH.

 3. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL.

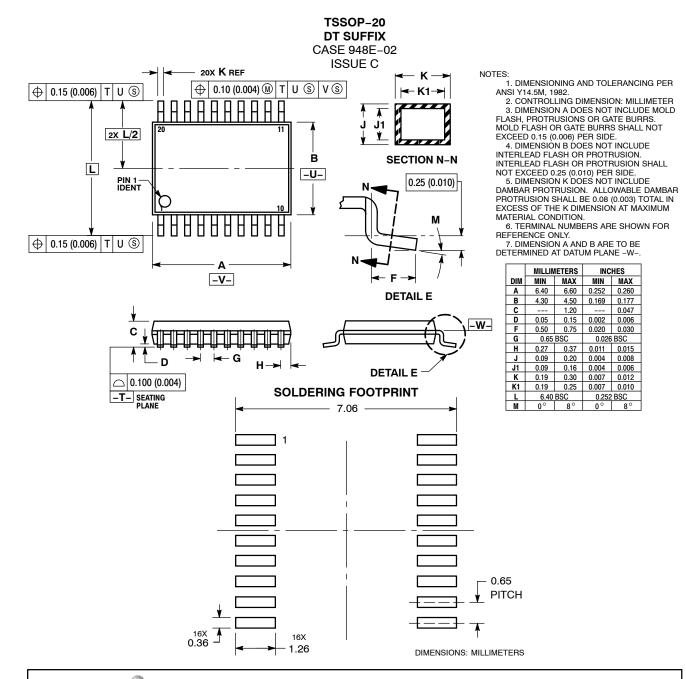
 4. DIMENSION B DOES NOT INCLUDE MOLD
- FLASH.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	1.010	1.070	25.66	27.17
В	0.240	0.260	6.10	6.60
С	0.150	0.180	3.81	4.57
D	0.015	0.022	0.39	0.55
Е	0.050	0.050 BSC		BSC
F	0.050	0.070	1.27	1.77
G	0.100	BSC	2.54	BSC
J	0.008	0.015	0.21	0.38
K	0.110	0.140	2.80	3.55
L	0.300 BSC		7.62	BSC
M	0°	15°	0°	15°
N	0.020	0.040	0.51	1.01

SOIC-20 **DW SUFFIX** CASE 751D-05 **ISSUE G**

NOTES:

- DIMENSIONS ARE IN MILLIMETERS.
 INTERPRET DIMENSIONS AND TOLERANCES
 PER ASME Y14.5M, 1994.
 DIMENSIONS D AND E DO NOT INCLUDE MOLD


- DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION.

 MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.

 DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS		
DIM	MIN	MAX	
Α	2.35	2.65	
A1	0.10	0.25	
В	0.35	0.49	
С	0.23	0.32	
D	12.65	12.95	
E	7.40	7.60	
е	1.27	BSC	
Н	10.05	10.55	
h	0.25	0.75	
L	0.50	0.90	
A	0 °	7 °	

PACKAGE DIMENSIONS

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunit

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative